
Pixelor: A Competitive Sketching AI Agent. So you think you can
sketch?

AYAN KUMAR BHUNIA∗, SketchX, CVSSP, University of Surrey, UK
AYAN DAS∗, SketchX, CVSSP, University of Surrey, iFlyTek-Surrey Joint Research Centre on Artificial Intelligence, UK
UMAR RIAZ MUHAMMAD∗, SketchX, CVSSP, University of Surrey, UK
YONGXIN YANG, SketchX, CVSSP, University of Surrey, iFlyTek-Surrey Joint Research Centre on Artificial Intelligence, UK
TIMOTHY M. HOSPEDALES, University of Edinburgh, SketchX, CVSSP, University of Surrey, UK
TAO XIANG, SketchX, CVSSP, University of Surrey, iFlyTek-Surrey Joint Research Centre on Artificial Intelligence, UK
YULIA GRYADITSKAYA, SketchX, CVSSP, University of Surrey, iFlyTek-Surrey Joint Research Centre on Artificial Intelli-
gence, UK
YI-ZHE SONG, SketchX, CVSSP, University of Surrey, iFlyTek-Surrey Joint Research Centre on Artificial Intelligence, UK

Pixelor

Human

(a) Early recognition (b) Multiple optimal strategies

Pixelor’s (AI) ‘Birthday cake’ sketch 1

Pixelor’s (AI) ‘Birthday cake’ sketch 2

Pixelor’s (AI) ‘Birthday cake’ sketch 3

Fig. 1. Our AI sketching agent Pixelor learns sketching strategies that lead to early sketch recognition. (a) In a competitive scenario, Pixelor and a human
player sketch a specified visual concept, while a judge (human or recognizer AI) attempts to recognize the concept. The competitor whose sketch is correctly
recognized first is the winner. Winning requires conveying as much as possible with few pixels/little ink. (b) Trained on human sketches, Pixelor is able to learn
multiple winning sketching strategies.

∗
These authors contributed equally.

Authors’ addresses: Ayan Kumar Bhunia, a.bhunia@surrey.ac.uk, SketchX, CVSSP,

University of Surrey, UK; Ayan Das, a.das@surrey.ac.uk, SketchX, CVSSP, University

of Surrey, iFlyTek-Surrey Joint Research Centre on Artificial Intelligence, UK; Umar

Riaz Muhammad, u.muhammad@surrey.ac.uk, SketchX, CVSSP, University of Sur-

rey, UK; Yongxin Yang, SketchX, CVSSP, University of Surrey, iFlyTek-Surrey Joint

Research Centre on Artificial Intelligence, UK, yongxin.yang@surrey.ac.uk; Timothy

M. Hospedales, University of Edinburgh, SketchX, CVSSP, University of Surrey, UK,

t.hospedales@ed.ac.uk; Tao Xiang, SketchX, CVSSP, University of Surrey, iFlyTek-

Surrey Joint Research Centre on Artificial Intelligence, UK, t.xiang@qmul.ac.uk; Yulia

Gryaditskaya, SketchX, CVSSP, University of Surrey, iFlyTek-Surrey Joint Research

Centre on Artificial Intelligence, UK, yulia.gryaditskaya@gmail.com; Yi-Zhe Song,

SketchX, CVSSP, University of Surrey, iFlyTek-Surrey Joint Research Centre on Artifi-

cial Intelligence, UK, y.song@surrey.ac.uk.

Publication rights licensed to ACM. ACM acknowledges that this contribution was

authored or co-authored by an employee, contractor or affiliate of a national govern-

ment. As such, the Government retains a nonexclusive, royalty-free right to publish or

reproduce this article, or to allow others to do so, for Government purposes only.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0730-0301/2020/12-ART166 $15.00

https://doi.org/10.1145/3414685.3417840

We present the first competitive drawing agent Pixelor that exhibits human-

level performance at a Pictionary-like sketching game, where the participant

whose sketch is recognized first is a winner. Our AI agent can autonomously

sketch a given visual concept, and achieve a recognizable rendition as quickly

or faster than a human competitor. The key to victory for the agent’s goal

is to learn the optimal stroke sequencing strategies that generate the most

recognizable and distinguishable strokes first. Training Pixelor is done in two
steps. First, we infer the stroke order that maximizes early recognizability of

human training sketches. Second, this order is used to supervise the training

of a sequence-to-sequence stroke generator. Our key technical contributions

are a tractable search of the exponential space of orderings using neural

sorting; and an improved Seq2Seq Wasserstein (S2S-WAE) generator that

uses an optimal-transport loss to accommodate the multi-modal nature of the

optimal stroke distribution. Our analysis shows that Pixelor is better than the
human players of the Quick, Draw! game, under both AI and human judging

of early recognition. To analyze the impact of human competitors’ strategies,

we conducted a further human study with participants being given unlimited

thinking time and training in early recognizability by feedback from an AI

judge. The study shows that humans do gradually improve their strategies

ACM Trans. Graph., Vol. 39, No. 6, Article 166. Publication date: December 2020.

166:2 • Ayan Kumar Bhunia, Ayan Das, Umar Riaz Muhammad, Yongxin Yang, Timothy M. Hospedales, Tao Xiang, Yulia Gryaditskaya, and Yi-Zhe Song

with training, but overall Pixelor still matches human performance. The code

and the dataset are available at http://sketchx.ai/pixelor.

CCS Concepts: • Computing methodologies → Search methodologies;
Machine learning algorithms; Image manipulation; Modeling and simulation.

Additional Key Words and Phrases: Sketch-generation, neural search, early

recognition, AI games, recurrent neural network

ACM Reference Format:
Ayan Kumar Bhunia, Ayan Das, Umar Riaz Muhammad, Yongxin Yang,

Timothy M. Hospedales, Tao Xiang, Yulia Gryaditskaya, and Yi-Zhe Song.

2020. Pixelor: A Competitive Sketching AI Agent. So you think you can

sketch?. ACM Trans. Graph. 39, 6, Article 166 (December 2020), 15 pages.

https://doi.org/10.1145/3414685.3417840

1 INTRODUCTION
The majority of sketch research to date has focused on making sense

of existing human sketch data, including the problems of sketch

recognition [Eitz et al. 2012; Schneider and Tuytelaars 2014; Yu

et al. 2017], segmentation [Schneider and Tuytelaars 2016; Yang

et al. 2020], beautification [Bessmeltsev and Solomon 2019; Simo-

Serra et al. 2018] and 3D inference [Su et al. 2018; Xu et al. 2014].

Others have also explored the relationship between sketch and

photo via the practical application of sketch-based image retrieval

[Sangkloy et al. 2016; Yu et al. 2016]. Instead of just learning a

sketch-specific feature representation, these works aim to learn a

joint embedding between photo and sketch where retrieval can be

conducted. Sketches are the result of a dynamic drawing process –

they can be highly abstract and subject to individual drawing skill

variability – are thus distinctively different to photos: photos are

static and pixel-perfect visual representations.

While static sketch generation and stylization given a photo or

an image [Berger et al. 2013; Li et al. 2019; Liu et al. 2020] were

studied in vision and graphics communities for a long while, only

recently were we able to train machines to draw novel sketches [Ha

and Eck 2018]. This task is of fundamental importance to visual

understanding of sketches – the AI agent needs to mimic the actual

human drawing process stroke-by-stroke to produce a plausible

sketch, accommodating different style and abstraction levels (Fig-

ure 1). We aim to push the envelope further by introducing an agent

that not only can sketch like a human, but also does so with a stroke

sequence targeted at early recognizable rendition – just as a good

human Pictionary player would do!

In conventional Pictionary, a human player draws an object while

being continually evaluated by another human judge. The score in

the game depends on how quickly the judge guesses the player’s

intended object. To train an optimal drawing strategy, we need

a training set that is representative of strategies used by strong

players. We conduct a study on QuickDraw [Ha and Eck 2018], the

largest human sketch dataset to date. We found that albeit with

different styles and levels of abstraction, stroke drawing order is a

dominant factor in winning the game. For sketches drawn under

the time-pressured condition of QuickDraw data collection, human

stroke ordering is dramatically better than random: confirming the

existence and exploitation by participants of a mental model of

stroke informativeness. A key discovery is that the most common

ordering is not the optimal one needed to win a Pictionary game,

and moreover the few good winning Pictionary players exploit dis-
tinct stroke orderings. That is, the distribution of optimally ordered

sketches with an early recognition property is multi-modal (Figures

1b, 5 and 6).

We train Pixelor , our competitive sketching agent, with a two-

stage framework. The first stage inputs a given set of training

sketches with arbitrary sequential ordering and infers the stroke-
level ordering that maximizes early recognition for this train set,

which is typically better than the human ordering in the raw in-

put. To infer the target stroke ordering we exploit Sketch-a-Net

2.0 [Yu et al. 2017] to score the recognizability of a partial sketch.

An obvious strategy is to exhaustively evaluate all possible stroke

orders, however, such exhaustive search results in a computationally

intractable combinatorial search space. As a tractable optimization

strategy over strokes permutations, we leverage NeuralSort [Grover
et al. 2019], a continuous relaxation of a classical sorting algorithm

that allows backward flow of straight-through (ST) gradients [Ben-

gio et al. 2013]. Existing applications of differentiable sorting have

used hand-crafted losses [Cuturi et al. 2019; Grover et al. 2019],

instead we deploy it to optimize a learned perceptual loss [John-
son et al. 2016] in the form of Sketch-a-Net recognition accuracy.

Overall, this framework side-steps combinatorial search of stroke

ordering by learning a stroke scoring function, such that sorting

strokes by score achieves early recognition.

In the second stage, we use the optimal training set computed

above to train a Seq2SeqWasserstein autoencoder (S2S-WAE) sketch

generation agent. Classic stroke-based sketch generators [Ha and

Eck 2018] are based on the standard Kullback-Leibler (KL) diver-

gence loss widely used in variational autoencoders [Bowman et al.

2016; Kingma and Welling 2014]. Our contribution is to replace this

with an optimal transport induced loss [Tolstikhin et al. 2018]. This

design choice is necessitated by observations made in the afore-

mentioned human study – the stroke ordering maximizing early

recognition is inherently a multi-modal distribution that is better

captured using the Wasserstein autoencoder [Tolstikhin et al. 2018].

In addition, we use a Transformer encoder [Vaswani et al. 2017] in

order to capture better contextual information compared to bidirec-

tional LSTM in our sketch generator.

To evaluate Pixelor , we compare its generated sketches with those

from human participants in the Quick, Draw! game in terms of

early recognizability. We find that for both AI Sketch-a-Net and

human judging, Pixelor sketches are recognized earlier than the

Quick, Draw! sketches that form its training data – thus confirming

the impact of our stroke order learning. To understand the impact

of human sketching conditions on early recognition performance,

we conduct a new human study by collecting new sketches via a

custom-built on-line interface. In this study humans are instructed

to optimize their stroke order for early recognition and given on-

the-fly feedback on recognizability in the form of accuracy of the

AI classifier. Our analysis shows that with such training, humans

do gradually improve their performance in terms of early sketch

recognizability. Crucially, (and unlike in Quick, Draw!), humans

are given unlimited time to think about their sketch. We compare

AI and human sketches with pixel-level synchronization, without

penalizing clock time or physical drawing speed. The results show

ACM Trans. Graph., Vol. 39, No. 6, Article 166. Publication date: December 2020.

Pixelor: A Competitive Sketching AI Agent. So you think you can sketch? • 166:3

that Pixelor trained on old (but reordered) Quick, Draw! data still
matches human performance under these challenging conditions.

As an application of this work, we define a competitive AI-vs-

human sketching game termed Pixelary, where a human competes

with a pixel-synchronized Pixelor agent to draw an object that can

be recognized more quickly by an AI judge.

The main contributions of our work can be summarized as:

• We present Pixelor: The first competitive sketching agent

that produces novel renditions of a given concept with early

recognizability.

• We generate training data for Pixelor by solving for the stroke
order that maximizes early recognition. We formulate this

problem as an optimization over strokes permutations and
utilize a differentiable solver to learn a stroke scoring model

end-to-end. The trained model can be used to compute the

optimal order of any given sketch.

• Our sketching agent Pixelor is implemented by a Sequence-

to-Sequence Wasserstein Auto-Encoder with transformer-

encoder to handle the multi-modeal distribution of optimal

strategies present in the sketches of good Pictionary players.

• We conduct a comprehensive study using both automated

and human evaluation to demonstrate the efficacy of our

agent. The results show that Pixelor surpasses human perfor-

mance as exhibited in theQuick, Draw! game, andmatches the

human performance exhibited in our new study with more

favorable conditions and training for the human competitors.

2 RELATED WORK
Sketch synthesis. Most existing sketch synthesismodels take raster

image as input and follow a photo-to-sketch synthesis paradigm

where the task is to produce a human sketch styled version of the

input photo. Early works either rely on training a category-specific

pictorial structure model [Li et al. 2017] or visual abstraction model

[Berger et al. 2013] that replaces strokes from photo edge maps with

those of humans. Recent attempts were mostly motivated by neural

style transfer methods from the photo domain [Chen et al. 2017b;

Gatys et al. 2016; Johnson et al. 2016; Ulyanov et al. 2016]. Zhang

et al. [2017] integrated a residual U-net to apply painting styles to

sketches with an auxiliary classifier generative adversarial network

(AC-GAN) [Odena et al. 2017]. Another class of generative models

exists that learns to draw by means of model-free [Ganin et al. 2018]

or model-based [Huang et al. 2019] exploration. Such models exploit

reinforcement learning algorithms to incorporate immediate feed-

back from a drawing environment. However, such approaches are

known to be sample-inefficient and hence hard to train. Although,

recent works [Zheng et al. 2018] tried to alleviate this drawback to

some extent by learning differentiable environment models [Ha and

Schmidhuber 2018].

Ha and Eck [2018] proposed SketchRNN, a sequence-to-sequence

variational autoencoder (Seq2Seq-VAE [Bowman et al. 2016]) to

model the sequential sketching process. In this model, the encoder

is a bi-directional recurrent neural network (RNN) that takes in

a vectorized human sketch and produces a Gaussian distribution

over a latent vector that summarizes the sketch, and the decoder is

an autoregressive RNN that samples an output sketch conditioned

on a random vector drawn from that distribution. The SketchRNN

model is trained to mimic the human sketching process including

both style and temporal order. Our desired competitive-sketching

agent however must furthermore generate sketches efficiently to

achieve early recognition with few strokes. To this end it must solve

additional challenges, highlighted by a comprehensive analysis on

human sketch data (Section 3). First, there are several potential

routes to a winning sketching strategy, so it must be able to repre-

sent multi-modal data. Second, winning strategies turn out to use

more jumps between the end-point and start-point of temporally

consecutive strokes than in typical human sketches. The above men-

tioned SketchRNN model struggles to represent such strategies and

generates non-optimal sketching sequences, even if trained with

optimally ordered data. To address this issue, we advance sketch

generation by employing an optimal transport induced loss for the

sequential generative model learning (instead of Kullback-Leibler

(KL) divergence loss used in [Bowman et al. 2016; Ha and Eck 2018]).

Sketch recognition. Early methods for sketch recognition were

developed to deal with professionally drawn sketches as in CAD

or artistic drawings [Jabal et al. 2009; Lu et al. 2005; Sousa and

Fonseca 2009]. A more challenging task of free-hand sketch recog-

nition was first tackled in [Eitz et al. 2012] along with the release

of the first large-scale dataset of amateur sketches. Initial attempts

[Li et al. 2015; Schneider and Tuytelaars 2014] to solve this prob-

lem consisted mainly of using hand-crafted features together with

classifiers such as SVM. Inspired by the success of deep convolu-

tional neural networks (CNN) on various image related problems,

the first CNN-based sketch recognition model was proposed in [Yu

et al. 2015]. This outperformed previous hand-crafted features, and

was followed by various subsequent CNN-based approaches [Jia

et al. 2017; Sarvadevabhatla et al. 2018; Yu et al. 2017]. In this paper,

we ask a more challenging question – instead of asking AI to rec-

ognize pre-drawn sketches, can we train agents to draw sketches

from scratch and compete with humans at competitive sketching?

However we draw on existing state of the art for recognition to

help determine optimal ordering when training our model and to

evaluate our results. We use an off-the-shelf recognizer [Yu et al.

2017], as our focus is on how to formulate the early recognition

objective using a pre-defined classifier. Exploring alternative on-

the-fly recognition methods is an interesting direction for future

work.

Optimal ordering. Sorting of pre-defined lists is one of the most

thoroughly studied algorithms in classic computer science [Cormen

et al. 2009]. However, the presence of non-differentiable steps in

conventional sorting approaches makes the use of sorting opera-

tors in gradient-based machine learning challenging, and use of

sorting in learning has been relatively limited to some carefully de-

signed special cases such as ranking [Burges et al. 2005; Burges 2010;

Rigutini et al. 2011]. The recent development of fully differentiable

sorting [Cuturi et al. 2019; Grover et al. 2019] algorithms enables

new capabilities in deep learning including representation learning

with ranking and 𝑘-NN losses, and top-𝑘 operators. Existing neural

sorting strategies have been demonstrated with hand-crafted losses,

where the optimal sorting is the known target for learning. In this

paper, we integrate differentiable sorting with a learned perceptual

ACM Trans. Graph., Vol. 39, No. 6, Article 166. Publication date: December 2020.

166:4 • Ayan Kumar Bhunia, Ayan Das, Umar Riaz Muhammad, Yongxin Yang, Timothy M. Hospedales, Tao Xiang, Yulia Gryaditskaya, and Yi-Zhe Song

loss [Johnson et al. 2016], in the form of recognizability as assessed

by Sketch-a-Net [Yu et al. 2017]. We train a stroke representation

and scoring function such that their sorted scores leads to the earli-

est possible recognition. This enables us to tractably generate the

optimal training set to train Pixelor .

AI Gaming. With recent advances in artificial intelligence (AI)

there have been multiple instances where AIs are able to compare,

and in some cases even surpass, human intelligence, whether in

simple recognition tasks [Yu et al. 2015] or a competitive game

[Morris 1997; Silver et al. 2016; Tesauro 1995]. In particular, the

synthesis of deep neural networks and reinforcement learning (RL)

has served as a key enabler in recent successes on games such as

Atari [Guo et al. 2014; Mnih et al. 2015], 3D virtual environments

[Dosovitskiy and Koltun 2017; Jaderberg et al. 2017; Mnih et al.

2016] and the ancient game of Go [Silver et al. 2016, 2017]. Pushing

this line of research, we explore the potential of an AI agent to

play a competitive Pictionary-like game of competitive sketching.

This task is particularly challenging since it involves understanding

how to convey semantics efficiently through sketch. Contrary to

the aforementioned games, it also uniquely involves: (i) a visual

generation aspect, rather than solely visual perception, and (ii) the

added complexity of competing in a game that is subjectively judged

by humans. We tackle the challenge by developing a model that

combines static (strokes) and dynamic (stroke order) visual infor-

mation to learn a stroke sequencing strategy targeted on quickly

conveying semantics through sketch. Finally, we apply the result to

define a fun human-AI competitive sketching game called Pixelary

(Section 8).

3 HUMAN SKETCH ANALYSIS
To inform the development of our Pixelor agent for competitive

sketching, we first conduct a study on the largest human sketch

dataset to date [Ha and Eck 2018]. This is in order to (i) gain better

understanding on the human sketching process, and more impor-

tantly (ii) extract insights on how best to win the game. QuickDraw

[Ha and Eck 2018] is the largest free-hand sketch dataset with more

than 50 million drawings across 345 categories. These sketches were

collected through a Pictionary-like game, where users are asked to

draw a doodle given a category name, while the game’s AI tries to

guess the category. An important aspect of this game is the time-

limit imposed on the users to draw a recognizable sketch, which

makes this dataset suited for our study – we want to compare people

who are able to produce a recognizable sketch early on, to those

whose sketches are recognized much later on (or never).

Revealing good and bad human Pictionary players. In Figure 2,

we show average recognition accuracy of 1000 randomly selected

sketches from 20 categories from the QuickDraw dataset at different

sketch completion rates. The completion rate is the ratio of the length
of drawn strokes (in pixels) to the total number of pixels in a sketch.

The cluster of sketches in the top right corresponds to complete

and detail-rich sketches that are well recognized: Those of good

sketchers, but weak Pictionary players. The sketches in the bottom

right correspond to complete and detailed but non-recognizable

Good Pictionary players
Good sketchers but poor

Pictionary players

Not good sketchers and poor
Pictionary players

Sketch completion rate

Re
co

gn
iti

on
 a

cc
ur

ac
y

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 2. Sketch recognizability versus sketch completion rate. Plot shows den-
sity, encoded both with the color and size of the points. (Top left) Sketches
of good Pictionary players, (top right) sketches of good sketchers but poor
Pictionary players, and (bottom left and right) sketches of bad sketchers
and poor Pictionary players.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Sketch completion rate

Original human
 strokes order

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Original human
 strokes order

(b) Face(a) Average over several categories

Sketch completion rate

Co
rr

ec
t c

la
ss

 s
co

re

Fig. 3. Recognizability scores (Sketch-a-Net 2.0 [Yu et al. 2017]) at various
levels of sketch completion for a randomly selected subset of sketches
from the QuickDraw dataset [Ha and Eck 2018]. Dashed lines indicates
the original human sketching strategy, shaded area indicates the region
between the best and worst possible sketching strategies, obtained with a
coarse exhaustive search.

sketches: those of bad sketchers. The top left of the plot is of par-

ticular interest, as it reflects sketches drawn by people potentially

good at a Pictionary game – they are able to produce recognizable
sketches with very few strokes.

The gap between good and bad stroke order. Figure 3 shows that
stroke order plays a crucial role in the early recognition of a sketch.

The dashed line indicates how the recognizability (using Sketch-a-

Net 2.0 [Yu et al. 2017]) of the partial sketches increase as more detail

is added – when following the original human sketching order. We

perform a coarse exhaustive search (described in detail in Section

4.1.1) over stroke order in each human sketch to find the best- and

worst-possible stroke sequences for early recognition, representing

by the top and bottom of the colored area. From the plots, it can

be seen that: (1) There is a significant gap between the upper- and

lower-bound, confirming that stroke order is indeed a dominating

ACM Trans. Graph., Vol. 39, No. 6, Article 166. Publication date: December 2020.

Pixelor: A Competitive Sketching AI Agent. So you think you can sketch? • 166:5

Good player strategy 2

General startegy

Good player strategy 1

100
75

25
0

50

100
75

25
0

50

100
75

25
0

50

0 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 9 100 1 2 3 4 5 6 7 8 9 10 11 12

Stroke number Stroke number Stroke number

Re
co

gn
iti

on
 a

cc
ur

ac
y

Fig. 4. Example human strokes ordering strategies. Grey: General strategy.
Red and Yellow: Two alternative sketching strategies of the good Pictionary
players. The graphs show the prediction probability of each sequence at
each accumulated stroke. It can be seen that sketches of good players are
recognized earlier.

factor for early sketch recognizability. (2) Human sketch order is

slightly closer to the upper bound than the lower bound, meaning

human participants in QuickDraw generally prioritized drawing

salient strokes first (Figure 3 a). (3) In most categories, there is still a

big gap between the human order and the optimal order (Figure 3 b).

This suggests that – even if using the same set of stroke primitives –

an AI agent has scope to compete with humans at Pixelary simply by

learning a better stroke-sequencing strategy. This is the motivation

behind the training setting of our AI drawing agent: it learns the

sequencing strategy by imitating the optimal stroke order rather

than the human one, which is sub-optimal for early recognizability

purposes.

The difference between strategies of bad and good human Pictionary
players. We further compare ordering strategies of ordinary human

Pictionary players with good players who achieve a recognizable

rendition early on. We make two key observations. First, there is by-

and-large a common ordering strategy among most humans, while

good sketchers often exploit diverse and distinct drawing strategies

(Figure 4). In Figure 5 we show kernel density plot of 128D Seq2Seq

autoencoder, trained separately on each category, features after PCA,

from two categories: cat and computer. It can be seen that there is

one dominating cluster of PCA features when we randomly sample

1K sketches from their respective categories. However, we see multi-

modal distributions emerging when we choose 1K samples from the

sketches of the good Pictionary players. The top 1K sketches are

chosen by considering the average recognition probability of the

accumulated strokes for each sketch.

Second, the optimal stroke orderings of strong human QuickDraw

players exhibit large jumps in-between consecutive strokes. The

average euclidean distance (in a 256 × 256 canvas) between the

end-point and the start-point of consecutive strokes constitutes

94.62(±14.74) for the original strokes order and 115.16(±15.47) for
the optimal stroke order. This is intuitive since humans tend to

complete one semantic part of the sketch before moving to the next

one (i.e., drawing all whiskers on one side of a cat face sketch before

moving to the other side. However, the complete part is often not

necessary for recognition, therefore the stroke sequencing strategy

computer (random 1K sketches)

cat (random 1K sketches)

computer (top 1K sketches)

PC1 PC1

PC1PC1

PC
2

PC
2

PC
2

PC
2

cat (top 1K sketches)

Fig. 5. Kernel density plot of 128D Seq2Seq autoencoder features projected
to principal component axes. (Left) Normal human data is uni-modal while
top players (right) exhibit multi-modal strategies.

that leads to early recognition may move away from this part-by-

part paradigm.

4 METHODOLOGY
Our goal is to obtain the sketching agent that produces recognizable

images with few strokes, as per top Pictionary players. Unfortu-

nately, only a small percentage of QuickDraw sketches satisfy this

criteria and are not sufficient for training. Therefore, as mentioned

earlier, there are two steps to training a strong Pixelary agent (Fig-

ure 6). (i) Our first step is generation of the optimal training set

from the (sub-optimal) QuickDraw human sketch dataset. (ii) The

optimally ordered QuickDraw dataset is used to train the generation

model. Steps (i) and (ii) could be performed jointly as a single step.

Nevertheless, since there is no information flow from (ii) to (i), it is

simpler to first pre-compute step (i).

4.1 Data reordering
In QuickDraw dataset, each category contains 75,000 sketches. Each

sketch has variable number of strokes. Exhaustively searching the

best stroke order in each sketch means evaluating each stroke order-

ing permutation. A sketch with 20 strokes would have 20!(2.43𝑒+18)
permutations. Such process is computationally expensive and in-

feasible. QuickDraw contains approximately 220𝐾 feasible sketches

with 𝑁 < 5 strokes and 500𝐾 infeasible ones with 𝑁 ≥ 8 strokes.

We, instead, explore three alternative strategies: (1) coarse level

stroke reordering, (2) a greedy strategy of picking the next stroke

that maximizes the accuracy and (3) a neural sorting.

4.1.1 Coarse level stroke reordering. To obtain coarse stroke re-

ordering, for each sketch we first iteratively group strokes into 5

stroke groups. At each iteration we identify the shortest stroke and

group it with the preceding or following neighboring stoke, depend-

ing which of them is shorter. We repeat this process till we obtain 5

stroke groups. 5 stroke groups give 5!(= 120) possible stroke per-
mutations. For each stroke groups permutation we compute Early
Recognition Efficacy (ERE) as the area under curve of correct recog-
nition probability (using Sketch-a-Net 2.0 [Yu et al. 2017]) at each

ACM Trans. Graph., Vol. 39, No. 6, Article 166. Publication date: December 2020.

166:6 • Ayan Kumar Bhunia, Ayan Das, Umar Riaz Muhammad, Yongxin Yang, Timothy M. Hospedales, Tao Xiang, Yulia Gryaditskaya, and Yi-Zhe Song

Transformer
Encoder Decoder

MMD

N(0,I)

Latent vector: Z

Data reordering

Neural sorting

Wasserstein Auto-Encoder

Optimal order sketch Reconstructed sketch

Fig. 6. A schematic illustration of the two step setting to train our stroke rendering agent – Pixelor . Yellow: Neural sort prediction for stroke-level order which
maximizes sketch recognition for the accumulated stroke representation. Red: Supervised training of Seq2Seq-WAE. We use Maximum Mean Discrepancy
(MMD) [Gretton et al. 2012] as a divergence measure between two distributions.

stroke (ERE is formally defined in Section 6.1). We search for the

permutation of strokes groups with the highest ERE, and select this

as the optimal ordering for each sketch.

4.1.2 Greedy approach. The greedy strategy is to sequentially pick

a stroke that maximizes the immediate accuracy gain. The compu-

tation cost of such approach is O(𝑁 2) classifier evaluations for 𝑁
strokes.

4.1.3 Neural sorting. To obtain an optimal reordering we propose

stochastic neural sorting [Grover et al. 2019] and optimize a per-

ceptual loss [Johnson et al. 2016] in the form of recognizability as

assessed by Sketch-a-Net [Yu et al. 2017]. Each sketch is first passed

into an autoencoder to obtain its feature embedding. The sketch

embeddings scores, which are passed to a stochastic sorting oper-

ator, are obtained through a multilayer perceptron network those

parameters are optimized to obtain early recognition as judged by

Sketch-a-Net [Yu et al. 2017].

Sketch Embedding. The first step of our training model is obtain-

ing the embedded representation of a sketch. We define a sketch

𝑋 =
[
𝑠 𝑗
]𝑁
𝑗=1

as an ordered set of 𝑁 strokes 𝑠 𝑗 and X as a set of

all possible sketches. The set X also contains partial/incomplete

sketches which may not have a semantic meaning. We use an en-

coder F𝜙∗
1

: X → R𝐷 , with parameters 𝜙∗
1
, as a feature extractor to

extract an embedding vector representing the sketch. F𝜙∗
1

produces

a 𝐷-dimensional embedding from a rasterized version of the sketch

𝑋 on a fixed sized canvas. F is realized using the Sketch-a-Net

2.0 [Yu et al. 2017] classifier up to a penultimate layer. Thus, the

sketch embedding is the 512𝐷 output of the penultimate layer of

the Sketch-a-Net 2.0, where the parameters 𝜙∗
1
are trained through

Equation (4).

Scoring a Stroke. The embeddings of the full rasterized sketch 𝑋

and its individual strokes rasterized on a fixed sized canvas together

serve as inputs to the neural sorting module. Stochastic neural

sorting, just like the classical sorting operator, operates on a set of

scalar values: the scores of each element in a given set. The scores

need to represent the relevance of each element for the downstream

task. In our case the elements are individual strokes and the task

is sketch recognition. As a scoring function 𝑆𝜃 : R2𝐷 → R we

use (a 3 layer multilayer perceptron neural network MLP) that

estimates the relevance score of each stroke of a sketch 𝑋 with

respect to the full 𝑋 . The score vector of a sketch 𝑋 is computed as

r(𝑋 ;𝜃) = [𝑟1 (𝑋 ;𝜃), · · · , 𝑟𝑁 (𝑋 ;𝜃)]𝑇 , where 𝑁 is a total number of

strokes in the sketch 𝑋 , and

𝑟 𝑗 (𝑋 ;𝜃) = 𝑆𝜃
([
F𝜙∗

1

({
𝑠 𝑗
})

;F𝜙∗
1

(𝑋)
])

(1)

where {𝑠 𝑗 } is a singleton set of 𝑗𝑡ℎ stroke of 𝑋 and [;] represents
the concatenation operator. F𝜙∗

1

({
𝑠 𝑗
})

is the embedding of the ras-

terized individual stroke, and F𝜙∗
1

(𝑋) is the embedding of the full

rasterized sketch 𝑋 . Thus, the score 𝑟 𝑗 (·) for stroke 𝑗 depends on
the concatenated embedding of the 𝑗th stroke and the full sketch.

Permuting Strokes. A sorting of 𝑁 elements is defined by an 𝑁 -D

permutation. Following the notation of [Grover et al. 2019], we

denote a valid permutation z = [𝑧1, 𝑧2, · · · , 𝑧𝑁]𝑇 as a list of unique

indices from {1, 2, · · · , 𝑁 } and the corresponding permutation ma-

trix as 𝑃z ∈ {0, 1}𝑁×𝑁
whose entries are 𝑃z [𝑖, 𝑗] = 1𝑗=𝑧𝑖 . The value

of 𝑧𝑖 denotes the index of the 𝑖𝑡ℎ most salient stroke of the given

sketch. With this definition, a sketch permuted by a given permuta-

tion z is expressed as 𝑋z = 𝑃z𝑋
𝑇
.

Sorting Strokes by Score. Let us now denote a potentially partial

sketch

𝑋1→𝑛 ≜
[
𝑠 𝑗
]𝑛
𝑖=1

as the set of its first 𝑛 strokes. By definition, a complete sketch is

𝑋1→𝑁 . Towards fulfilling our end goal, we would like to have an

optimally permuted sketch 𝑋z∗ such that the incomplete sketch

(𝑋z∗)1→𝑛 can be recognized for as low value of 𝑛 as possible. Hence,

we formulate our learning objective for a single sketch 𝑋 as a mini-

mization of the negative log-likelihood of the correct label for every

sketch (𝑋z)1→𝑛 :

𝐽 (𝜃 ;𝑋) =
𝑁∑
𝑛=1

− logP
[
𝑦 = 𝑌 |F𝜙∗

1

((
𝑃z · 𝑋𝑇

)
1→𝑛

)
;𝜙∗

2

]
with (2)

𝑃z = StochasticNeuralSort (r (𝑋 ;𝜃)) , (3)

here 𝑌 is the true label of the sketch 𝑋 , StochasticNeuralSort(·)
is the stochastic sorting operator [Grover et al. 2019] on the ordered

set of 𝑁 scores and P[𝑦 |·;𝜙∗
2
] is a Sketch-a-Net [Yu et al. 2017]

classifier, through which we define a perceptual [Johnson et al. 2016]

rather than hand-crafted [Grover et al. 2019] loss. The minimization

is performed over the parameters 𝜃 of the scoring function r (𝑋 ;𝜃),
defined in Equation 1.

ACM Trans. Graph., Vol. 39, No. 6, Article 166. Publication date: December 2020.

Pixelor: A Competitive Sketching AI Agent. So you think you can sketch? • 166:7

The early terms in the summation (i.e., (𝑋z)1→1
, (𝑋z)1→2

, · · ·)
will struggle to contribute this optimization, however, uniformly

optimizing over all of them encourages an ordering that maximizes

the chances of recognition as early on as possible.

Feature Extractor and Classifier. The parameterized feature ex-

tractor F𝜙1
(·) and classifier P[𝑦 |·;𝜙2] are pre-trained jointly for the

sketch classification task as{
𝜙∗
1
, 𝜙∗

2

}
= argmin

{𝜙1,𝜙2 }

∑
𝑋 ∈X̂

− logP
[
𝑦 |F𝜙1

(𝑋) ;𝜙2
]
, (4)

where X̂ is the set of only complete sketches present in the dataset.

For efficiency, the representations 𝜙1 and 𝜙2 are learned through

Eq 4, and fixed for subsequent training of the scoring model with

Equation (3). The vector 𝜙1 is the parameters of the Sketch-a-Net

2.0 [Yu et al. 2017] classifier up to a penultimate layer – the output

of this layer is a sketch embedding F𝜙1
(·) and 𝜙2 is the parameters

of the last layer that returns the classification score P [𝑦 |·;𝜙2].

Optimal ordering. Optimizing 𝐽 (𝜃 ;𝑋) (Equation 2) with respect

to 𝜃 , trains a stroke scoring function in such a way that when all

strokes are sorted by salience (Equation 3), the early recognition

according to P is maximized. The optimally sorted version of Quick-

Draw for training a generation agent is obtained by permuting each

sketch 𝑋 with the estimated sorting z∗ as 𝑃z∗𝑋𝑇
. The re-ordering is

independent per sketch, while learning 𝜃 aggregates performance

across all sketches.

Complexity. Our neural sorting method estimates a relevance

score for each stroke in a given sketch in O(𝑁), and performs sort-

ing in O(𝑁 2) time for 𝑁 strokes. In the training phase, an additional

O(𝑁) classifier (loss) evaluations (Equation 2) are required. In prac-

tice, the classifier (linear) cost dominates, thus learning to re-order

is fast. The complexity values of all considered methods are listed

in Table 5.

Implementation details. We implemented the scoring function 𝑆𝜃
with an MLP of a structure 2 × 512 → 512 → 256 → 1, with each

hidden layer followed by a ReLU activation function and the final

score is activated with a Sigmoid(·) function. The only trainable

parameters of the sorting module are the ones in this MLP (∼ 0.6𝑀).

The Sketch-a-Net [Yu et al. 2017] is composed of a few sets of

convolution-max pooling-ReLU blocks followed by an MLP. We set

the temperature parameter of the stochastic neural search [Grover

et al. 2019] 𝜏 (𝑒) = 1

1 +
√
𝑒
at 𝑒𝑡ℎ epoch, gradually reducing it towards

zero as the training progresses, forcing the sorting model to discover

the non-relaxed permutation matrix. For each sketch in the set of

70,000 training of each class, we infer the best stroke permutation.

4.2 Sequence-to-Sequence Wasserstein Auto-Encoder
Our Pixelor sketching agent is a sequence-to-sequence Wasserstein

autoencoder, which is trained on the reordered data computed in the

previous section. We first describe our encoder/decoder architecture

and then provide a motivation for a Wasserstein autoencoder.

Sequence-to-Sequence. Pixelor is realized as a sequence-to-sequence
encoder-decoder architecture. While the classic SketchRNN [Ha and

Eck 2018] uses bidirectional LSTM and autoregressive LSTM as the

encoder and decoder respectively, we replace the bidirectional LSTM

encoder by a Transformer [Vaswani et al. 2017] encoder to capture

better contextual information. Following SketchRNN [Ha and Eck

2018], we keep the autoregressive LSTM decoder with Gaussian

Mixture Model components.

Generative SequenceModels. In vanilla sequence-to-sequencemod-

els such as SketchRNN, the encoder produces a mean vector and

(diagonal) covariance matrix with which a Gaussian distribution is

paramaterized. A random vector is then drawn from this Gaussian

which forms the input for the decoder. The difference between Pix-
elor and prior VAE-based work, such as SketchRNN, lies in how the

distribution of latent vectors is constrained. The distribution of la-

tent vectors is important because we need to generate a distribution
of new sketch without any reference such as an input sketch or photo.

In SketchRNN’s variational autoencoder the distribution of latent

vectors is controlled via the famous variational lower bound:

inf

𝐺 (𝑋 |𝑍) ∈G
inf

𝑄 (𝑍 |𝑋) ∈Q
E𝑃𝑋

[
KL (𝑄 (𝑍 |𝑋), 𝑃𝑍)

−E𝑄 (𝑍 |𝑋) [log𝑝𝐺 (𝑋 |𝑍)]
], (5)

where 𝑃𝑋 is the real data distribution, 𝑃𝑍 is the prior distribution

over latent vectors (here it is a standard Gaussian),𝑄 (𝑍 |𝑋) is a prob-
abilistic encoder, and𝐺 (𝑋 |𝑍) is a deterministic decoder. Both 𝑄 (·)
and𝐺 (·) are realized by neural networks, thus the infimum operator

over sets (Q and G) corresponds to the minimization over network

parameters. This model struggles with matching multi-modal distri-

butions because of the form of reverse KL divergence, which results

in the requirement of training SketchRNN separately for each object

category [Chen et al. 2017a]. As mentioned in Section 3, we observe

a multi-model distribution of optimal strategies already within a

single category. To alleviate this limitation we propose to use instead

a Wasserstein autoencoder.

Wasserstein autoencoder (WAE). The wasserstein autoencoder

(WAE) is formulated as,

inf

𝐺 (𝑋 |𝑍) ∈G
inf

𝑄 (𝑍 |𝑋) ∈Q
E𝑃𝑋

[
E𝑄 (𝑍 |𝑋)

[
𝑐
(
𝑋,𝐺 (𝑋 |𝑍)

)]]
+𝜆D(𝑄𝑍 , 𝑃𝑍)

(6)

where 𝑐 (𝑎, 𝑏) is an arbitrary function that measures the difference

between 𝑎 and 𝑏, D is an arbitrary divergence between two dis-

tributions, and 𝑄𝑍 = E𝑃𝑋 [𝑄 (𝑍 |𝑋)]. The first term in Equation 6

corresponds to the second term in Equation 5 as they are both

reconstruction losses.

The key difference is then how to realize the regularization term:

E𝑃𝑋
[
KL

(
𝑄 (𝑍 |𝑋), 𝑃𝑍

)]
(VAE) v.s.D(𝑄𝑍 , 𝑃𝑍) (WAE). The difference

between these two mechanisms matters, as VAE asks every sample’s

distribution to match the prior (standard Gaussian), which results

in a small intersected area as the overlap of samples’ posterior distri-

butions. This will eventually lead to the lack of diversity/modality.

Instead,D(𝑄𝑍 , 𝑃𝑍) employs a deterministic decoder, andmatches

one single posterior distribution (per mini-batch) with the prior

(standard Gaussian). As a result, the Wasserstein autoencoder cre-

ates a wider space for latent vectors, and eventually promotes diver-

sity. The choice of D is flexible as long as it is a valid distribution

ACM Trans. Graph., Vol. 39, No. 6, Article 166. Publication date: December 2020.

166:8 • Ayan Kumar Bhunia, Ayan Das, Umar Riaz Muhammad, Yongxin Yang, Timothy M. Hospedales, Tao Xiang, Yulia Gryaditskaya, and Yi-Zhe Song

divergence, and we use Maximum Mean Discrepancy (MMD) [Gret-

ton et al. 2012] for the ease of implementation as alternative choices,

e.g. Jensen–Shannon divergence, may involve adversarial training,

which is less stable. We use an inverse multi-quadratic kernel, as

is used in the paper that introduced the Wasserstein autoencoder

[Tolstikhin et al. 2018].

Implementation details. We use the same data format for sketch

coordinates as used by the classic SketchRNN, and the output di-

mension of the Transformer encoder is 512 with 4 heads and 2

stacked layers. The dimension of the feed forward network within

the transformer is 2048, we use the same parameter free positional

encoding layer as used by [Vaswani et al. 2017]. The value of 𝜆 in

Equation 6 is 100. Unlike LSTM, since the input and output dimen-

sion of transformer encoder are same, we use a simple linear layer,

shared across the time steps, to convert 5 elements sketch represen-

tation to a 512 dimensional vector at each time step of the sketch

sample. Instead of using the final time step’s output to predict the

distribution parameters, we perform a maxpooling operation over

the time steps and use it to predict the distribution parameters.

5 TRAINING DATA
We train our model using QuickDraw [Ha and Eck 2018], the largest

free-hand sketch dataset. We choose 20 object categories namely

bicycle, binoculars, birthday cake, book, butterfly, calculator, cat,

chandelier, computer, cow, cruise ship, face, flower, guitar, mosquito,

piano, pineapple, sun, truck and windmill; using 70,000 sketches

per category for training. In order to maintain the high quality of

the generated sketches, we train one separate sorting and synthesis

model for each category but share a common classifier as a judge.

However, we observed that having one classifier with too many

classes makes the sorting model relatively unstable to train. In our

experiments, we used two separate 10 class classifiers to train our

sorting model. We divide all the data into training and test splits,

by keeping a quarter of all sketches as a test set.

6 EVALUATION ON QUICKDRAW
In this section, we evaluate neural sorting ordering algorithm against

alternative ordering strategies and sketch generation models in

terms of early sketch recognition and diversity of generated samples.

In this section, recognition accuracy is judged by the Sketch-a-Net

[Yu et al. 2017] recognizer AI throughout. Our code is implemented

in PyTorch [Paszke et al. 2019].

6.1 Metrics
As a quantitative measure of early recognition we define Early
Recognition Efficacy (ERE) as the area under curve of the correct class
probability P[𝑦 = 𝑌 |𝑋𝑡] at different completion rates 𝑡 ∈ [0, 1] of a
sketch, where 𝑋𝑡=0 and 𝑋𝑡=1 denote empty and complete sketches,

respectively. We compute an empirical estimate of this quantity as

a weighted summation over 𝑇 discrete intervals

𝐸𝑅𝐸 ≈
𝑇∑
𝑝=0

P
[
𝑦 = 𝑌 |F𝜙∗

1

(
𝑋𝑝 ·Δ𝑡

)
;𝜙∗

2

]
Δ𝑡, (7)

where Δ𝑡 = 1/𝑇 .

Table 1. ANOVA results for the impact of each of the ordering strategies on
the measure of early recognition efficacy (ERE), defined in Section 6.1.

Compared ordering strategies p-value

Human order vs Coarse exhaustive search 5e-12

Coarse exhaustive search vs Greedy 1.2e-6

Greedy vs Neural Sort 5.5e-15

We measure quality and diversity by Frechet Inception Distance

(FID) [Heusel et al. 2017]. It is computed by evaluating the distance

between the activations of the second last layer of the pre-trained

Sketch-a-Net 2.0 classifier for generated sketches and real sketches

from the training dataset:

𝑑2 = ∥𝜇1 − 𝜇2∥2 + Tr(𝐶1 +𝐶2 − 2

√
𝐶1𝐶2), (8)

where 𝜇1, 𝐶1 and 𝜇2, 𝐶2 are the mean and covariance of the activa-

tions for generated and real sketches respectively.

For the evaluation of all generation models with both metrics, we

generate 10,000 sketches for each baseline.

6.2 Ordering Strategies
We first validate the ability of our neural sorting ordering algorithm

to find a good stroke ordering. The neural sorting model for reorder-

ing the original data is compared against: (1) Using the raw data

from QuickDraw, in original human provided order, (2) A coarse

exhaustive search (Section 4.1.1) (3) A greedy strategy of picking

the next stroke that maximizes the accuracy (Section 4.1.2).

Neural Sort Improves Human Ordering in QuickDraw. Figure 7

shows the correct class probability (Sketch-a-Net AI judge) versus

pixel-level percentage of sketch completion. For neural sorting, we

evaluated all metrics on a held-out test-set comprising a quarter

of all sketches. All methods start with low recognition accuracy at

low sketch completion percentage and asymptote to high accuracy.

However better methods increase in accuracy quicker at a given

completion rate (closer to top-left corner). The average early recog-

nition efficacy (ERE) (Section 6.1) of sketches with original human

order of strokes is 0.612 ± .10. Greedy stroke search (dashed) im-

proves on the original human order (dotted), with ERE of 0.665± .08.
A coarse exhaustive search (dash-dotted) with 5 groups achieves

an ERE of 0.673 ± .08. Thus, both naive heuristics provide similar

improvement on the original human data. Our neural sorter (solid)

achieves the best performance, reaching ERE of 0.715 ± .09, while
still being quite efficient to evaluate. We analysed these results for

significance using ANOVA, which showed that each reordering

method improves statistically significantly in early recognition com-

pared to its predecessor in terms of the average ERE. The computed

p-values are shown in Table 1.

Neural Sort Convergence. Figure 8 analyses the convergence of
our neural sorting method during training in terms of early recog-

nition efficacy of re-ordered human sketches (on a held-out test-

set comprising a quarter of all sketches) versus epochs on a few

representative categories. We can see that performance improves

continually as training proceeds, and surpasses the original order-

ing within 10 epochs of learning. This confirms that neural sorting

ACM Trans. Graph., Vol. 39, No. 6, Article 166. Publication date: December 2020.

Pixelor: A Competitive Sketching AI Agent. So you think you can sketch? • 166:9

0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Sketch completion rate

Co
rr

ec
t c

la
ss

 s
co

re

Sketch completion rate Sketch completion rate Sketch completion rate

Average over
20 categories

Book Cruise ship Windmill

Fig. 7. Correct class probability for different orderings of QuickDraw strokes at different sketch completion rates. We compare correct class probability for the
original human strokes ordering (dotted line), versus the following ordering strategies: coarse exhaustive search (dash-doted), greedy search (dashed line)
and the proposed neural search (solid line). The curves are shown for the average of all 20 chosen categories and three distinct ones. The curves for all the
categories individually are shown in the supplemental.

0.5

0.6

0.7

0.8

0.9

1.0

0.4Ea
rly

 R
ec

og
ni

tio
n

E�
ca

cy
 (E

RE
)

Epochs
0 2 4 6 8 10 12 14

Chandellier
Birthday cake
Truck
Binoculars
Face
Avg of 20

Fig. 8. Evolution of early recognition efficacy (ERE, Section 6.1) of re-ordered
QuickDraw data over training epochs of or neural sort. For comparison, we
show the ERE of original order as well (dashed lines).

works as expected, and crucially that it is possible to learn stroke and

sketch embeddings that provide perceptual informativeness scores

(Equation 1) suitable for optimizing early recognition accuracy by

sorting.

Neural Sort Generalization. As described in Section 4, learning the

parameters of the sorting model is reliant on a feature extractor and

a classifier already trained to be generalizable on new sketches. As

a result, the sorting model can be used on unseen sketches during

inference. We took advantage of it by training the sorting model on

a subset of the QuickDraw dataset and reordered all sketches only

by means of inference. Unlike with an exhaustive search or greedy

search, we are able to reduce the computational cost for the neural

sort by invoking the classifier while reordering the data. In our

experiments, we used 3/4 of the data for training, and reordered the
entire dataset as a part of inference. We validate the ability of Neural

Sort to generalize by comparing the ERE scores across training set

sketches and unseen sketches – these are almost the same, 0.72± .07
and 0.71 ± .1, respectively.

0.0

0.2

0.4

0.6

0.8

1.0

Co
rr

ec
t c

la
ss

 s
co

re

0.0 0.2 0.4 0.6 0.8 1.0

Sketch completion rate

Average over
20 categories

Fig. 9. Correct class probability for the sketches generated with our S2S-
WAE, when trained on the data sorted with the neural sort (solid line), with
greedy search (dashed line) or originalQuickDraw data (dotted line). Correct
class probability is an average over all 20 considered categories.

6.3 Quality and Diversity of Generation
We first provide a detailed evaluation of an impact of the network

architecture choice on the diversity of the generated sketches and

early sketch recognition, when trained on optimally sorted data. We

then compare the performance of our optimal suggested network

architecture versus SketchRNN [Ha and Eck 2018] on the original

and sorted data.

6.3.1 Impact of Model Components. As described in Section 4.2,

the original SketchRNN uses Long Short-Term Memory (LSTM) [Se-

meniuta et al. 2016] both as an encoder and decoder and Kullback-

Leibler (KL) divergence as a distribution criteria. We evaluate the

performance when an encoder or/and decoder is a Transformer net-

work [Vaswani et al. 2017]. We as well, substitute variation lower

bound (Equation 5) with Wasserstein loss (Equation 6), and with

Maximum Mean Discrepancy (MMD) [Gretton et al. 2012] distri-

bution divergence measure. Table 2 shows that the optimal per-

formance in terms of both ERE and FID is obtained when we use

Transformer as encoder, in combination with MMD loss, which both

ACM Trans. Graph., Vol. 39, No. 6, Article 166. Publication date: December 2020.

166:10 • Ayan Kumar Bhunia, Ayan Das, Umar Riaz Muhammad, Yongxin Yang, Timothy M. Hospedales, Tao Xiang, Yulia Gryaditskaya, and Yi-Zhe Song

contribute to a better performance. We refer to this S2S-WAE model

as Pixelor .

Table 2. Ablation study of model components in terms of image generation
quality measured by FID score mean and standard deviation. Training with
neural-sorted data.

Model Encoder Decoder Prior FID Score ERE

Sketch-RNN LSTM LSTM KL 10.17(1.94) 0.56

Variant-1 LSTM LSTM MMD 9.81(1.98) 0.59

Variant-2 Transformer LSTM KL 9.63(1.68) 0.63

Variant-3 Transformer Transformer KL 10.49(1.81) 0.61

Variant-4 Transformer Transformer MMD 10.32(2.01) 0.62

S2S-WAE (Ours) Tranformer LSTM MMD 9.06(1.86) 0.70

6.3.2 Pixelor performance. We compared the performance of both

Pixelor , our S2S-WAE and the classic SketchRNN [Ha and Eck 2018]

when trained with each dataset: the original QuickDraw stroke data,

and our neural sort optimized data.

Diversity. We evaluate the diversity of the generated samples in

terms of FID scores ([Heusel et al. 2017] and Section (6.1)). Our S2S-

WAE has lower FID scores than the conventional Sketch-RNN, both,

when trained with the optimally ordered dataset or with the original

datatset (Table 3), an thus have higher quality of the generated data.

This is due to our ability to better handle the multi-modality of

optimally ordered data. The Sketch-RNN is unable to cope with

multi-modal distributions, and thus, when trained on the optimally-

ordered data, produces lower quality generations. Meanwhile, our

S2S-WAE is able to generate high quality images when training on

this optimally ordered dataset. FID score models the distribution as

a single Gaussian and compares it with the ground-truth distribu-

tion. Since in our case the optimally ordered dataset often can not

be modeled with a single normal distribution well, the FID scores

increase when trained on optimally ordered data. Please see the

supplemental for the break down of FID scores per category.

Early recognition. We evaluate early recognition through ERE

(Eq. 7), by averaging the predicted probability value of the ground-

truth category of the sketches at 100 intervals. The results in Ta-

ble 3, show that: (1) our Seq2Seq-WAE architecture improves on

SketchRNN’s Seq2Seq-VAE in terms of early recognizability, no mat-

ter what data is used for training. (2) Training our model with re-

ordered data improves performance substantially. However, (3) only

our Seq2Seq-WAE is able to exploit the re-ordered data. SketchRNN’s

performance drops slightly when using the re-ordered data due to

its inability to exploit the multi-modality.

We further evaluate the quality of the fully generated sketches

by computing the classification accuracy with pre-trained Sketch-a-

Net 2.0. Overall our model generates more recognizable sketches

(Table 4), even when only late (rather than early) recognition is

considered. This is attributed to the better sequence to sequence

architecture of S2S-WAE compared to the classic SketchRNN.

The results in Figure 9 show the early recognition performance

of S2S-WAE generated sketches when trained with original human

data (dashed line), greedy ordering (dotted line), and our learned

neural sort ordering (solid line). We can see that our neural sort

ordering outperforms the competitors by a large margin.

Table 3. Early recognition efficacy (ERE) and image generation quality,
evaluated through FID scores (lower is better), of generated sketches trained
with original ordered data, and order estimated by NeuralSort. Accuracy is
averaged across 20 classes. The values in braces indicate standard deviations.

Original order NeuralSort order

ERE FID ERE FID

S2S-WAE (Ours) 0.563 7.52 (1.72) 0.657 9.07 (1.86)

SketchRNN 0.532 8.95 (1.73) 0.526 10.18 (1.94)

Table 4. Classification accuracy of complete sketches generated by different
synthesizers.

Orignal order NeuralSort order

S2S-WAE (Ours) 92.6% 94.9%

SketchRNN 89.0% 87.3%

6.4 Performance and complexity of reordering

Table 5. Computational complexity and practical single GPU run-time for
reordering the 2.4𝑀 QuickDraw sketches of our chosen 20 classes. Classifier
cost𝐶 , scoring cost 𝑆 , strokes 𝑁 , stroke groups𝐺 , backprop. epochs 𝐸.

Complexity Approx runtime

Exhaustive search O(𝐶𝑁 !) est. 10
7
days

Coarse Exhaustive search O(𝐶𝐺!) ∼ 60 days

Greedy O(𝐶𝑁 2) ∼ 8 days

Neural sorting (Ours) O((𝑆𝑁 2 +𝐶𝑁)𝐸) ∼ 15 days

Our optimal neural sort re-ordering strategy has comparable

runtime to the greedy strategy that picks a stroke to maximize

the accuracy gain. For our model, scoring is much faster than the

classifier (so 𝑆 ≪ 𝐶) and the classifier evaluation (Sketch-a-Net

inference ≈ 0.1𝑚𝑠 on a standard GPU) dominates the cost. The

alternatives have no scoring cost, but worse dependence on the

classifier cost. Our Neural Sort approach scales well, it is slower

than Greedy search, but provides improves early recognition of the

ordered and generated data. Furthermore, once trained it can be

used to re-order new data as only O(𝑆𝑁 2) cost (Section 6.2).

6.5 Discussion
Overall our results show that our Neural Sorting significantly im-

proves the ordering of QuickDraw data in a scalable manner. Fur-

thermore, our resulting Pixelor agent can synthesize sketches that

can be recognized more early than those in QuickDraw; and earlier

and more accurately overall than those generated by SketchRNN.

7 HUMAN STUDY
In this section, we perform a set of human studies to evaluate our

Pixelor agent. In particular, we re-evaluate the previous comparisons

on QuickDraw data, but using a team of human judges, rather than

Sketch-a-Net AI judge. More significantly, we collect a new dataset

of human sketches under favorable conditions designed for early

recognition termed SlowSketch, and compare Pixelor’s performance

against this new data under both AI and human judging.

ACM Trans. Graph., Vol. 39, No. 6, Article 166. Publication date: December 2020.

Pixelor: A Competitive Sketching AI Agent. So you think you can sketch? • 166:11

7.1 Human Study Setup
Subset of QuickDraw sketches. We first evaluate how Pixelor,

trained on optimally-ordered QuickDraw data, competes with the

human sketchers, who are limited by time constraints (all the par-

ticipants of QuickDraw datatset were limited by a 20-seconds time

frame) when evaluated by human judges. For this evaluation, we

randomly selected 12 sketches for each of 20 categories, listed in

Section 5 from both QuickDraw and Pixelor generated data.

Sketching attempt number
1 2 3 4 5 6 7

0 0.2 0.4 0.6 0.8 1
Color encoding: normilized stroke number

Fig. 10. Visualization of the sketches of the ‘cat’ category by two partici-
pants from the SlowSketch datatset.

Newly collected human sketches - SlowSketch. We next built a

custom interface to collect a new set of test data, where human

observers are not limited by any time constraint, and are provided

with on-the-fly feedback about the confidence of recognition of

their sketches. The participants were asked to make sketches of 20

given categories. To help train participants to optimize for early

recognition, the sketching interface consisted of a canvas as well

as a plot that shows the score given by the Sketch-a-Net AI judge

for the desired category. Participants made at least 7 attempts per

category (Figure 10). In this way participants had the chance to

refine their sketching strategy to achieve earlier recognition by the

AI judge over repeated trials. We collected ≈ 1700 sketches from

12 participants. A screenshot of the interface is provided in the

supplemental.

New QuickDraw New QuickDraw New QuickDraw

Bicycle Chandelier Cow

Fig. 11. Visual differences between newly collected SlowSketch sketches
and samples from theQuickDraw dataset.

Analysis of SlowSketch. The new SlowSketch data differs from the

QuickDraw data in the amount of details and diversity of sketching

strategies as shown in Figure 11. We can see that the new sketches

are cleaner and more precise than QuickDraw, due to the lack of

(clock) time pressure. To study the affect of multiple practice trials,

the ERE (AI Judge) scores of the human sketches vs trials are plotted

in Figure 12. We can see that performance slowly improves with

Sketching attempt

ER
E

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

0.48

0.
26

0.40

0.
25

0.54

0.
22

0.52

0.
20

0.55

0.
21

0.56

0.
20

0.61

0.
20

Fig. 12. Early Recognition Efficacy (ERE) of new human sketches in the new
SlowSketch dataset at the different attempt numbers. ERE improves slightly
with practice.

sketching attempts, after some exploration of extreme strategies on

the second attempt.

Human AI Competition: Data Preparation. To organize the data

for a fair comparison of sketching efficiency, we need to normalize

for physical drawing speed and scale. We centered and scaled all

the sketches so that their area matches a canvas size 256 × 256

pixels. To control for drawing speed, we then establish pixel-level

synchronization. We compute the length of all sketches and select

the one with the largest value. We then pad all the sketches to have

the same length by repeating the last sub-stroke of a sketch. This

does not visually alter the appearance of the sketch, or the early

recognition time. But it does allow all sketches to be compared

evenly in terms of % of pixel completion.

For newly collected human sketches, for each participants and

each category we select one sketch out of 7 for subsequent human
judge evaluation, as the sketch with the shortest total length. This
corresponded to the 4th attempt on average, which is the middle

practice trial out of seven. We later show in terms of ERE scores

that the selected sketch are indeed representative of the whole set

(Figure 14). Note however that the shortest sketch is likely to have

the best early recognition properties for human observers among

all 7 attempts.

Metrics. We employ different metrics for when the judge is hu-

man or AI. For AI judge, we measure the early recognizability of

sketches through the previously defined ERE (Section 6.1), which is

an approximation of a continuous measure. For human judge, we

resort to two discrete measures. First, we compute an average (the

ratio of the length of drawn strokes in pixels to the total number of

pixels in a sketch) for all correct guesses made by human within a

given category – smaller number indicates better early recognizabil-

ity. Second, we evaluate an average amount of the correct guesses –

larger number indicates better recognizability.

Pixelor Training. For the comparisons in this section, the same

Pixelor as in Section 6 is used. That is, it is trained on re-ordered

QuickDraw data.

ACM Trans. Graph., Vol. 39, No. 6, Article 166. Publication date: December 2020.

166:12 • Ayan Kumar Bhunia, Ayan Das, Umar Riaz Muhammad, Yongxin Yang, Timothy M. Hospedales, Tao Xiang, Yulia Gryaditskaya, and Yi-Zhe Song

face
cat

cat butterfly

Fig. 13. Top row in each section shows the sketch generated by Pixelor , while the second row shows human drawing in SlowSketch.

7.2 AI judge
We first compare Pixelor sketch generation with those drawn in our

SlowSketch dataset, and those of QuickDraw, when judged for early

recognition by the AI classifier Sketch-a-Net 2.0 [Yu et al. 2017].

The early recognition results in Figure 14 show that Pixelor clearly
provides the best early recognition performance. On average, the

newly SlowSketch human sketches are correctly recognized at 33%

of sketch completion while Pixelor ones already at 17%. (The sketch

is considered to be correctly recognized when the accuracy of the

true class is higher than 0.5.) Only 68% of complete human sketches

are correctly recognized, compared to 85% for the randomly selected

subset of Pixelor sketches, used in this study.

Surprisingly, the AI classifier performs much worse on the newly

collected SlowSketch sketches than on theQuickDrawhuman sketches.

This is due to the discrepancy between the style of QuickDraw

sketches on which the recognition AI was trained, and those in the

new dataset (Figure 11). Thus the human SlowSketch sketches here

are scored unrealistically badly, and this result should not be taken

very literally. We do also compare the performance on the selected

sketches (previous section) with the average performance and see

that the performance is similar. Thus the selected sketches can be

considered representative of human performance in SlowSketch.
In the next section we repeat the evaluation with human judges,

which we assume provides gold-standard recognition such that the

dataset bias between QuickDraw and SlowSketch can be ignored.

Co
rr

ec
t c

la
ss

 s
co

re

Sketch completion rate

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 14. Comparison of early recognition performance for Pixelor, human
Quickdraw and human SlowSketch sketches (both selected and average).
The shown curves are computed by averaging the correct class probabilities
of all sketches at each completion rate.

7.3 Human judging
In this sectionwe evaluate Pixelor vs QuickDraw humans and Pixelor
vs SlowSketch humans under human judging in two independent

studies with non-overlapping sets of participant judges.

Interface. We created an on-line interface, where the participant

judges are shown one sketch at a time and do not know if it is a

human or AI sketch. Participants are able to explore a sketch unfold-

ing dynamically by moving a slider (only the movement forward

is possible) in 5% completion intervals. Below the canvas with the

sketch, we showed 20 categories and asked the judge to guess as

soon as they think they recognize the shape. An screenshot of the

interface is shown in the supplemental.

Pixelor vs QuickDraw humans. In the first study, 8 participant

judges provided 1920 guesses in total. In each trial they were ran-

domly shown either a sketch from QuickDraw dataset or a Pixelor
sketch.We recorded the completion step at which they first correctly

recognized the sketch.

In this setup, humans are able to recognize Pixelor sketches

slightly faster than the sketches from the QuickDraw dataset. The

average correct guess for the QuickDraw sketches was done at 29.5%

of sketch completion, while for Pixelor at 28.2%. We performed an

ANOVA analysis which shows that Pixelor wins statistically signifi-

cantly on average with 𝑝-value of 5𝑒 − 4. Moreover, if we analyze

each category individually and fix the significance threshold at 5𝑒−3,
Pixelor wins statistically significantly on 6 categories and loses just

on 2. The total number of correct guesses for the Pixelor sketching
sequences is also higher than for Quickdraw: 82% versus 79%. Thus,

in summary, we can see that Pixelor systematically outperforms the

humans of QuickDraw.

Pixelor vs SlowSketch humans. In the second study another 8 par-

ticipant judges took part, and were prompted to guess on a mix of

Pixelor and newly collected SlowSketch human sketches. We again

collected 1920 guesses. For each category we compute the average

sketch completion rate when the correct guess was made. The re-

sults in Figure 15 show that Pixelor performs comparably to human

performance: The average correct guess for Humans is at 31% of the

sketch completion vs 33% for AI sketches. On average, significance

analysis shows that Pixelor loss is statistically significant with 𝑝-

value of 4𝑒 − 4. However, when we fix the significance threshold for

each category at 5𝑒 − 3, we see the performance is almost the same

on Human and Pixelor generated sketches: Pixelor wins on 4 and

loses on 5. Please see the supplemental for category-wise 𝑝-values.

ACM Trans. Graph., Vol. 39, No. 6, Article 166. Publication date: December 2020.

Pixelor: A Competitive Sketching AI Agent. So you think you can sketch? • 166:13

0.3

0.4

0.2m
osquito

butter�y
truck
cow
calculator
piano
w

indm
ill

guitar
bithday cake
binoculars
bicycle
sun
pinapple
�ow

er
face
cruise ship
com

puter
chandelier
cat
book

Human
Pixelor

Sk
et

ch
 c

om
pl

et
io

n
ra

te
 w

he
n

th
e

co
rr

ec
t g

ue
ss

 is
 d

on
e

Fig. 15. Comparison of the average sketch completion rates when the cor-
rect guess is made. Pixelor wins on 9 categories (highlighted in green),
demonstrating a competitive behavior. The lower is better.

Computer Mosquito

Fig. 16. Examples of the multi-modal generation behavior of Pixelor.

On average human judges made a correct guess on 78.2% of Pixelor
sketches and 79.0% of human sketches. This similar recognition rate

and win/loss ratio indicates that overall Pixelor can be considered to

perform comparably to the favorably evaluated SlowSketch humans.

Qualitative Analysis. We provide qualitative comparison of the

strategies developed by Pixelor versus those of human competi-

tors in SlowSketch. Figure 13 shows examples where Pixelor beats
SlowSketch competitors in early recognition under human judging.

The dark square indicates the completion step where the human

guessed correctly. Overall Pixelor starts the sketch with drawing

iconic parts of the respective categories. For example, in the case

of ‘cat’ it tends to avoid drawing eyes and nose at an early stage,

prioritizing whiskers. For ‘butterfly’, Pixelor focuses on the iconic

wing contours ahead of the body or antennae.

More winning sketches of Pixelor are provided in Figure 16. It

shows that Pixelor is indeed able to generate multiple winning strate-

gies per category – computers vary from the standard setups to all-

in-one, and mosquitos depict different wing patterns and proboscis.

This echoes well with the superior performance of Pixelor sketches
in terms of FID scores, as previously reported in Section 6.3.2.

Guitar Cat Cow

Pixelor QuickDrawPixelor QuickDrawPixelor QuickDraw

Fig. 17. Poor quality sketches generated by AI (marked with a gray frame)
versus exampleQuickDraw sketches.

Failure cases due to poor-quality sketch generation are illustrated

in Figure 17. We notice Pixelor would often struggle with synthesiz-

ing repetitive patterns (e.g., guitar strings, and cow body patches).

This behavior resembles closely with the failure cases of SketchRNN.

We attribute this to limitations imposed by the underlying RNN ar-

chitecture and the difficulty behind modeling the pen jump between

sketch strokes.

Discussion. The analysis above shows that our Pixelor agent out-
performs human participants when judged by AI and performs

competitively, when judged by a human observer. We attribute this

to the overall quality differences between the real human sketches

sampled from QuickDraw or the sketches from the new SlowSketch,
and those automatically synthesized by Pixelor – the former being

100% AI-recognizable sketches, whereas the latter with an average

recognition rate of 94.9% (Table 4). Cow is a good example, where

the synthesizer often produces odd-looking cows (Figure 17) which

directly resulted in cow performing badly in the human study (Fig-

ure 15). A better synthesizer would help (e.g., further extending the

decoder to Transformer-based), though is outside the scope of this

paper. Our neural sorting module is however separate and should

work with any synthesizer. We, further, hypothesize that if it was

possible to collect a larger amount of data of the type in SlowS-
ketch for retraining the synthesize, then the quality of the generated

doodles can be improved.

8 APPLICATIONS
Pixelary game. As an application of our Pixelor agent, we define

a competitive Pictionary-like sketching game, that is fair, fun for a

human user, and focuses the competition on the question of scientific

interest – that of sketch generation strategy.

We take inspiration from the popular setting of a Pictionary

game where one member from each team is given an object name

and the competitors are required to simultaneously draw sketches

corresponding to the given word in such a way that a judge can

guess the word correctly. To focus the competition on the sketch

generation rather than recognition, we use an AI judge, and let

a human compete with Pixelor AI. The judge attempts to guess

the category being sketched at each moment of drawing, and the

competitor (human or AI) whose sketch’s name is guessed correctly

first wins the game.

Defining a Pictionary-like game for fair competition between

AI and human competitors is non-trivial due to the disembodied

nature of the AI. For example, a major problem of AI vs. Human

competition in a conventional Pictionary game scenario is that the

human is limited by physical movement speed while the AI is not.

ACM Trans. Graph., Vol. 39, No. 6, Article 166. Publication date: December 2020.

166:14 • Ayan Kumar Bhunia, Ayan Das, Umar Riaz Muhammad, Yongxin Yang, Timothy M. Hospedales, Tao Xiang, Yulia Gryaditskaya, and Yi-Zhe Song

Fig. 18. In our AI vs. Human Pixelary game, a human-player and an AI-
player draw simultaneously (with pixel level synchronization) the sketch of
a given object on two canvases side by side. Both the sketches are observed
an AI judge as they are drawn and evaluated independently. The judge
makes one attempt at guessing after each time-step of drawing. The player
whose sketch is recognized correctly first wins.

This aspect of unfair competition would lead to a 100% victory

rate for the AI, and a boring experience for the human player. To

this end, we remove the impact of movement speed in the typical

Pictionary game by introducing pixel-level synchronization between

the human and AI agent drawings, similarly as we use for our

evaluation of the Pixelor agent. This means that pixels (∼drops of
ink) are used by the human and AI agent at exactly the same rate.

The player who draws a recognizable sketch first, given the same

pixels/ink usage, wins the game. We call this the Pixelary game, as

illustrated in Figure 18.

Note that our focus differs from the one presented in Sarvadevab-

hatla et al. [2018], as we tackle the very different and much more

challenging task of creating an agent that can draw sketches to

compete with human players rather than developing a judge that

guesses the drawn sketches of humans.

More than a game. The proposed game and its variations has a

potential of assisting in child development and learning, and gen-

erally improving human sketching abilities. Results in Figure 12 is

a good testament of that, where participants of our data collection

study improved the early recognition properties of their sketches.

Our agent generates sketches with diverse appearances, as shown

in Figure 16, thus encouraging human participants to explore al-

ternative sketching strategies (Figure 10), rather than learning by

heart the optimal strokes sequence. The data collected under such

scenarios can be used to study human cognitive processes and can

encourage the development of advanced sketch recognition agents.

9 CONCLUSION
We proposed a novel challenge at the intersection of sketch synthe-

sis and recognition: that of developing a sketching agent optimized

for early recognition of its sketches. Our Pixelor sketching agent

can sketch competitively with humans and often beat humans in

early recognition rate in direct competitive sketching. It beats classic

SketchRNN, as well as humans of the QuickDraw competition under

both human and AI judging, and matches human performance un-

der more challenging conditions of our new SlowSketch competition

under human judging. Neural generative modeling of sketches is

imperfect compared to human sketching quality, meaning that the

AI starts at a disadvantage in sketch quality compared to humans.

Nevertheless Pixelor achieves excellent human-level performance

through learning optimized stroke ordering. In particular it achieves

excellent performance by developing novel strategies including for-

saking the human prior preferences for completeness and symmetry.

The key novelty of our work is in formulating the early recognition

objective using a pretrained classifier and studying early recognition

in line drawing sequences.

ACKNOWLEDGMENTS
We thank all the participants contributed to the SlowSketch dataset

and the user study.

REFERENCES
Yoshua Bengio, Nicholas Léonard, and Aaron Courville. 2013. Estimating or propagating

gradients through stochastic neurons for conditional computation. arXiv preprint
arXiv:1308.3432 (2013).

Itamar Berger, Ariel Shamir, Moshe Mahler, Elizabeth Carter, and Jessica Hodgins. 2013.

Style and abstraction in portrait sketching. ACM Transactions on Graphics (TOG) 32,
4 (2013).

Mikhail Bessmeltsev and Justin Solomon. 2019. Vectorization of line drawings via

polyvector fields. ACM Transactions on Graphics (TOG) 38, 1 (2019), 1–12.
Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Jozefowicz, and

Samy Bengio. 2016. Generating Sentences from a Continuous Space. In Conference
on Natural Language Learning (CoNLL).

Christopher Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamil-

ton, and Gregory N Hullender. 2005. Learning to rank using gradient descent. In

Proceedings of the 22nd International Conference on Machine learning (ICML).
Christopher JC Burges. 2010. From ranknet to lambdarank to lambdamart: An overview.

Learning 11, 23-581 (2010).

Dongdong Chen, Lu Yuan, Jing Liao, Nenghai Yu, and Gang Hua. 2017b. Stylebank:

An explicit representation for neural image style transfer. In Computer Vision and
Pattern Recognition (CVPR).

Yajing Chen, Shikui Tu, Yuqi Yi, and Lei Xu. 2017a. Sketch-pix2seq: a model to generate

sketches of multiple categories. arXiv preprint arXiv:1709.04121 (2017).
Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009.

Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press.

Marco Cuturi, Olivier Teboul, and Jean-Philippe Vert. 2019. Differentiable Ranking

and Sorting using Optimal Transport. In Advances in Neural Information Processing
Systems (NeurIPS).

Alexey Dosovitskiy and Vladlen Koltun. 2017. Learning to act by predicting the future.

In International Conference on Learning Representations (ICLR).
Mathias Eitz, James Hays, and Marc Alexa. 2012. How do humans sketch objects? ACM

Transactions on Graphics (TOG) 31, 4 (2012).
Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, SM Eslami, and Oriol Vinyals. 2018.

Synthesizing programs for images using reinforced adversarial learning. arXiv
preprint arXiv:1804.01118 (2018).

Leon A Gatys, Alexander S Ecker, and Matthias Bethge. 2016. Image style transfer

using convolutional neural networks. In Computer Vision and Pattern Recognition
(CVPR).

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexan-

der Smola. 2012. A kernel two-sample test. Journal of Machine Learning Research
(JMLR) 13, 1 (2012).

Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. 2019. Stochastic Optimiza-

tion of Sorting Networks via Continuous Relaxations. arXiv:stat.ML/1903.08850

Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard L Lewis, and Xiaoshi Wang. 2014.

Deep learning for real-time Atari game play using offline Monte-Carlo tree search

planning. In Neural Information Processing Systems (NeurIPS).
David Ha and Douglas Eck. 2018. A Neural Representation of Sketch Drawings. In

International Conference on Learning Representations (ICLR).
David Ha and Jürgen Schmidhuber. 2018. Recurrent World Models Facilitate Policy

Evolution. In Advances in Neural Information Processing Systems 31. 2451–2463.

ACM Trans. Graph., Vol. 39, No. 6, Article 166. Publication date: December 2020.

Pixelor: A Competitive Sketching AI Agent. So you think you can sketch? • 166:15

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp

Hochreiter. 2017. Gans trained by a two time-scale update rule converge to a local

nash equilibrium. In Neural Information Processing Systems (NeurIPS).
Zhewei Huang, Wen Heng, and Shuchang Zhou. 2019. Learning to paint with model-

based deep reinforcement learning. In Proceedings of the IEEE International Confer-
ence on Computer Vision. 8709–8718.

Mohamad Faizal Ab Jabal, Mohd Shafry Mohd Rahim, Nur Zuraifah Syazrah Othman,

and Zahabidin Jupri. 2009. A comparative study on extraction and recognition

method of CAD data from CAD drawings. In International Conference on Information
Management and Engineering (ICIME).

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z

Leibo, David Silver, and Koray Kavukcuoglu. 2017. Reinforcement learning with

unsupervised auxiliary tasks. In International Conference on Learning Representations
(ICLR).

Qi Jia, Meiyu Yu, Xin Fan, and Haojie Li. 2017. Sequential Dual Deep Learning with

Shape and Texture Features for Sketch Recognition. Computing Research Repository
(CoRR) (2017).

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. 2016. Perceptual losses for real-time

style transfer and super-resolution. In European Conference on Computer Vision
(ECCV).

Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. Com-
puting Research Repository (CoRR) (2014).

Yijun Li, Chen Fang, Aaron Hertzmann, Eli Shechtman, and Ming-Hsuan Yang. 2019.

Im2Pencil: Controllable Pencil Illustration From Photographs. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 1525–1534.

Yi Li, Timothy M Hospedales, Yi-Zhe Song, and Shaogang Gong. 2015. Free-hand

sketch recognition by multi-kernel feature learning. Computer Vision and Image
Understanding (CVIU) 137, C (2015).

Yi Li, Yi-Zhe Song, Timothy M Hospedales, and Shaogang Gong. 2017. Free-hand

sketch synthesis with deformable stroke models. International Journal of Computer
Vision (IJCV) 122, 1 (2017).

Difan Liu,MohamedNabail, AaronHertzmann, and Evangelos Kalogerakis. 2020. Neural

Contours: Learning to Draw Lines from 3D Shapes. arXiv (2020), arXiv–2003.

Tong Lu, Chiew-Lan Tai, Feng Su, and Shijie Cai. 2005. A new recognition model for

electronic architectural drawings. Computer-Aided Design (CAD) 37, 10 (2005).
Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy

Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asynchronous

methods for deep reinforcement learning. In International Conference on Machine
Learning (ICML).

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G

Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski,

et al. 2015. Human-level control through deep reinforcement learning. Nature 518,
7540 (2015).

Robert Morris. 1997. Deep Blue Versus Kasparov: The Significance for Artificial Intelli-

gence. Technical Report (1997).
Augustus Odena, Christopher Olah, and Jonathon Shlens. 2017. Conditional Image

Synthesis with Auxiliary Classifier GANs. In International Conference on Machine
Learning (ICML).

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.

PyTorch: An imperative style, high-performance deep learning library. In Advances
in Neural Information Processing Systems(NeurIPS).

Leonardo Rigutini, Tiziano Papini, Marco Maggini, and Franco Scarselli. 2011. SortNet:

Learning to rank by a neural preference function. IEEE Transactions on Neural
Networks 22, 9 (2011).

Patsorn Sangkloy, Nathan Burnell, Cusuh Ham, and James Hays. 2016. The sketchy

database: learning to retrieve badly drawn bunnies. ACM Transactions on Graphics
(TOG) 35, 4 (2016).

Ravi Kiran Sarvadevabhatla, Shiv Surya, Trisha Mittal, and R. Venkatesh Babu. 2018.

Game of Sketches: Deep Recurrent Models of Pictionary-Style Word Guessing.

Computing Research Repository (CoRR) (2018).
Rosália G Schneider and Tinne Tuytelaars. 2014. Sketch classification and classification-

driven analysis using fisher vectors. ACM Transactions on Graphics (TOG) 33, 6
(2014).

Rosália G Schneider and Tinne Tuytelaars. 2016. Example-based sketch segmentation

and labeling using crfs. ACM Transactions on Graphics (TOG) 35, 5 (2016).
Stanislau Semeniuta, Aliaksei Severyn, and Erhardt Barth. 2016. Recurrent dropout

without memory loss. arXiv preprint arXiv:1603.05118 (2016).
David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van

Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,

Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural networks and

tree search. Nature 529, 7587 (2016).
David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,

Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. 2017.

Mastering the game of go without human knowledge. Nature 550, 7676 (2017).

Edgar Simo-Serra, Satoshi Iizuka, and Hiroshi Ishikawa. 2018. Mastering sketching:

adversarial augmentation for structured prediction. ACM Transactions on Graphics
(TOG) 37, 1 (2018), 1–13.

Pedro Sousa and Manuel J Fonseca. 2009. Geometric matching for clip-art drawing

retrieval. Visual Communication and Image Representation (VCIR) 20, 2 (2009).
Wanchao Su, Dong Du, Xin Yang, Shizhe Zhou, and Hongbo Fu. 2018. Interactive

sketch-based normal map generation with deep neural networks. Proceedings of the
ACM on Computer Graphics and Interactive Techniques 1, 1 (2018), 1–17.

Gerald Tesauro. 1995. Td-gammon: A self-teaching backgammon program. In Applica-
tions of Neural Networks.

Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Scholkopf. 2018. Wasser-

stein Auto-Encoders. In International Conference on Learning Representations (ICLR).
Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Victor S Lempitsky. 2016. Texture

Networks: Feed-forward Synthesis of Textures and Stylized Images.. In International
Conference on Machine Learning (ICML).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In

Advances in neural information processing systems (NeurIPS).
Baoxuan Xu, William Chang, Alla Sheffer, Adrien Bousseau, James McCrae, and Karan

Singh. 2014. True2Form: 3D curve networks from 2D sketches via selective regular-

ization. (2014).

Lumin Yang, Jiajie Zhuang, Hongbo Fu, Kun Zhou, and Youyi Zheng. 2020. SketchGCN:

Semantic Sketch Segmentation with Graph Convolutional Networks. arXiv preprint
arXiv:2003.00678 (2020).

Qian Yu, Feng Liu, Yi-Zhe Song, Tao Xiang, Timothy Hospedales, and Chen Change

Loy. 2016. Sketch Me That Shoe. In Computer Vision and Pattern Recognition (CVPR).
Qian Yu, Yongxin Yang, Feng Liu, Yi-Zhe Song, Tao Xiang, and Timothy M Hospedales.

2017. Sketch-a-net: A deep neural network that beats humans. International Journal
of Computer Vision (IJCV) 122, 3 (2017).

Qian Yu, Yongxin Yang, Yi-Zhe Song, Tao Xiang, and Timothy Hospedales. 2015. Sketch-

a-net that beats humans. In British Machine Vision Conference (BMVC).
Lvmin Zhang, Yi Ji, and Xin Lin. 2017. Style Transfer for Anime Sketches with Enhanced

Residual U-net and Auxiliary Classifier GAN. Computing Research Repository (CoRR)
(2017).

Ningyuan Zheng, Yifan Jiang, and Dingjiang Huang. 2018. Strokenet: A neural painting

environment. In International Conference on Learning Representations.

ACM Trans. Graph., Vol. 39, No. 6, Article 166. Publication date: December 2020.

